2014 ST200 开发套件用户手册

BEYD 深圳市佰誉达科技有限公司 2014/10/27

目录

特点	3
应用	3
功能概述	3
ST200 系统框图	4
入门准备	5
所需设备清单	5
安装 Signal Explorer 软件	5
检查配置并开始体验	6
ST200 开发套件硬件介绍	7
雷达传感器接头说明	8
X4, X5 K-LC 系列雷达传感器	8
X3 K-HC1 和 K-MC 系列雷达传感器	8
其他雷达传感器	8
Signal Explorer 软件	9
概述	9
【Help】帮助按钮	9
操作模式	9
通用功能部分	10
读数	10
配置(Configurations)选择器	10
设定配置(Configuratons)	10
信号操作部分	10
录制信号部分	10
使用 Signal Explorer 软件	11
Doppler 模式	11
关于多普勒雷达	11
计算多普勒频率	11
ST200 的 Doppler 模式	12
各种 Chart(图表)模式	13
缩放和移动图表	13
Signal chart mode 信号图表模式	13
Signal chart mode 信号图表模式测量缓慢运动的信号	14
RMS chart 模式	14
探索相位关系	15
FMCW 模式	16
关于 FMCW	16
锯齿波调制	16
三角波调制	17
高级 FMCW 调制技术	17
测距精度	
实际信号中的自混频串扰	
线性特征	19

探索 FMCW	19
FSK 模式	20
探索 FSK	21
技术背景	21
录制与回放信号	22
限制文件大小	22
设定	23
配置(Configurations)	23
配置(Configurations)设定	23
雷达传感器规格书	24
命名约定	24
存储路径	24
适配已有雷达传感器	24
新建一个全新的雷达传感器	24
FM 斜坡定义	25
FM 线性调频	25
文件和目录组织	26
系统文件	26
工作文件	26
雷达传感器接头	27
X1 通用 I/O 接头	27
X2/X3 直接输入接头	27
x2 引脚配置	27
X3引脚配置/供电电源选择	28
X4 / X5 高增益输入	28
X4/X5 高增益输入 引脚配置/供电电源选择	28 28
X4 / X5 高增益输入 引脚配置/供电电源选择 为 X4 / X5 可选的增益设置	28 28 28
 X4 / X5 高增益输入引脚配置/供电电源选择	28 28 28 28 28
 X4 / X5 高增益输入引脚配置/供电电源选择	

特点

- 支持 CW、FMCW、FSK 和单脉冲雷达传感器
- 可通过 USB 连接电脑
- 板载低噪声电源
- 多种接头,可连接多种雷达传感器
- 板载放大器供多普勒雷达传感器使用
- 高性能 16 位数据处理
- ADC 和 DAC 采样率高达 250kHz
- 设计坚固、紧凑
- 强大的 PC 端软件 Signal Explorer
- 集成 NI 公司 LabVIEWDAQmx USB 接口

应用

- 评估先进短程雷达应用
- 开发自己的数据处理算法
- 信号分析及记录
- 学习、探索雷达原理

功能概述

ST200 开发套件支持 16 位数据采集和处理,采样率高达 250kHz,足以采集 RFbeam 公司的雷达传感器的信号。

ST200 的硬件主板集成了电源、放大器和丰富的 I/O 接口。数据采集由 NI 公司的一个 16 位多功能 NI-USB-6211 DAQ 模块执行,该模块安装在主板背面。

RFbeam Signal Explorer 软件操作简单,功能强大。它可用于学习基础的雷达信号处理, 也支持 FMCW 和 FSK 调制,有助于开发高精度的雷达测距产品。

入门准备

连接 ST200 和电脑之前,请先安装 PC 端软件 Signal Explorer。

所需设备清单

- ST200 硬件开发板
- PC 端软件 Signal Explorer 安装程序
- USB 线
- 雷达传感器 K-LC2, 接到 X5 接头
- 个人电脑

安装 Signal Explorer 软件

ST200 的软件安装程序包含了所有的组件:

- RFbeam ST200 Signal Explorer 软件
- NI 公司 DAQmx 驱动程序
- NI 公司 LabVIEW 运行引擎系统
- 运行 RFbeam Signal Explorer 安装程序 setup.exe,光盘安装或下载安装 如果您的电脑未安装 LabVIEW 运行引擎和 DAQmx 驱动,会弹出提示,需要您接受 NI 公司的许可证
- 2. 推荐使用默认的安装路径,方便以后排除故障
- 3. 请耐心等待 LabVIEW 引擎和 DAQmx 驱动安装完成,耗时约数分钟。
- 4. 请按提示重启电脑
- 5. 安装完成后,会在电脑桌面看到 Signal Explorer 图标,或者通过 Windows 开始菜单 找到该图标:开始->所有程序->RFbeam->Signal Explorer

检查配置并开始体验

首先我们体验一下采用 Doppler 模式观察行人的运动,请参考图 1。

- 1. 将雷达传感器 K-LC2 接到 ST200 硬件开发板的 X5 接头
- 2. 将 ST200 通过 USB 连接电脑, Windows 系统会弹出提示"发现新硬件"
- 3. Windows 系统可能要求安装驱动,请选择"自动搜索"
- 4. 运行 SignalExplorer 软件,开始菜单->所有程序->RFbeam->SignalExplorer
- 5. 体验一下图 1 所标明的一些重要的控制选项
- 6. 按照图 1 所示,拖动检测区域的 3 个光标,如果光标不可见,请点击【Reset】按钮
- 7. 请在雷达传感器 K-LC2 前方挥手,软件上方图表会显示频率和速度信号,底部图表 会显示时域信号。
- 8. 用户可自行进一步熟悉3个光标的作用
- 9. 切换至"Doppler"-"Phase"模式("Doppler"菜单位于软件界面左上方, "Phase"菜单位 于左下方),可以看出手臂的运动方向。注意:光标请按照图1设置。

图 1. Signal Explorer 软件界面,请按照此图指示设置图中标记的选项。

ST200 开发套件硬件介绍

ST200 主要包括: 一个主板, 一个 16 位 USB 数据采集系统(采样率 25kHz)。主板集成了 5V和 3.3V低噪声电源、模拟信号缓存器和放大器。

图 2. 主板连接头说明

图 3. ST200 系统框图

雷达传感器接头:

X1:	通用 I/O	X2:	混合 I/O		
X3:	4 通道模拟输入	X4:	2 通道模拟输入	X5:	2通道模拟输入

电脑接口: X9: 电脑 USB 接口

电源接头: X10: 外部 DC 电源输入 X11: 板载低噪声 DC 电源输出

雷达传感器接头说明

关于雷达传感器接头的详细说明,请参考图 3 和<u>雷达传感器接头</u>章节。耗电较大的雷达 传感器(比如 K-MC4), USB 供电不足,需要通过 ST200 上面的 X10 接头外接一个电压为 12V 电流大于 0.5A 的 DC 电源。

X4, X5 -- K-LC 系列雷达传感器

X5 可连接不带内置放大器的 K-LC 系列雷达传感器,如 K-LC3 X4 支持远程连接 K-LC 系列雷达传感器 X4, X5 均支持双通道输入(I 通道和 Q 通道),并集成放大器

X3 -- K-HC1 和 K-MC 系列雷达传感器

K-MC系列传感器内置放大器,通常连接至 X3
X3支持双通道输入(I通道和 Q通道),并连接至 DAQ系统
注:
K-HC1 雷达传感器需连接单独的电源和一根特殊的适配线
K-MC4 需要在 X10 外接 12V 的 DC 电源

其他雷达传感器

如需连接其他公司的特殊雷达传感器,请与我们联系。

Signal Explorer 软件

概述

【Help】帮助按钮

- 1. 选择主菜单上面"Help"->"Get Context Help"
- 2. 将光标置于需要了解的条目之上,会打开一个悬浮框,介绍该条目的功能

操作模式

ST200 SignalExplorer 提供三种操作模式:

- Doppler 模式: 测量运动目标的速度、方向
- FMCW 模式: 测量运动目标和静止目标的距离
- FSK 模式: 测量运动目标的距离

用户操作界面功能强大,可以选择操作模式、传感器类型、设置过滤器类型和带宽、显示采样率、显示时域信号和频域信号。

用户界面主要分为三个部分,分别为:通用功能部分,信号操作部分,录制信号部分。

图 4. 用户界面三大部分

通用功能部分

在所有操作状态下,优化都可操作通用功能部分的设置和读数。

读数

输入至 FFT 信号处理的每个通道的采样数 Samples: 每通道的 ADC 采样率 Rate: Loop Time: 读取所选数据的采样时间,运算公式如下: loop time = number of samples sampling Rate

配置(Configurations)选择器

很多关键的设置都可以保存为配置(Configurations)。现有配置可随时调用,调用现有配 置时, SignalExplorer 软件会返回到 Doppler 模式。

配置(Configuratons)命名约定:

.cfq
ST200 接头输入引脚
ST200 接头名称(可参考雷达传感器接头章节)
雷达传感器型号

设定配置(Configuratons)

用户可以修改或复制现有配置,也可以新建配置,可参考配置(Configurations)设定章节。

信号操作部分

此部分所显示的是实时信号。

通过水平方向的操作标签("Doppler","FSK","FMCW")可选择不同操作模式,某些模式会有 子模式。

通过垂直方向的操作标签(比如 Doppler 模式下的"Time Signal"和"Phase")选择子模式。

录制信号部分

SignalExplorer 软件可以录制实时信号,也可以回放在 Doppler 模式和 FSK 模式下录制的 信号。

使用 Signal Explorer 软件

Doppler 模式

关于多普勒雷达

准确的说法是多普勒连续波雷达,这种雷达不产生脉冲,而是发送 K 波段的连续波。 雷达传感器也称为雷达信号收发器,因为它们包含了发射天线和接收天线。 多普勒雷达传感器用于测量移动目标的速度和方向,欲了解更多可参考: <u>http://en.wikipedia.org/wiki/Doppler radar</u> <u>http://www.radartutorial.eu/11.coherent/co06.en.html</u>

图 5. 雷达传感器电路

计算多普勒频率

$$f_{d} = \frac{2 \cdot f_{Tx} \cdot v}{c_{0}} \cdot \cos \alpha \qquad (1)$$

or
$$v = \frac{c_{0} \cdot f_{d}}{2 \cdot f_{Tx} \cdot \cos \alpha} \qquad (2)$$

RFbeam 公司的多普勒雷达传感器输出一个 IF 中频信号,该信号混合了发射(Tx)频率和接收(Rx) 频率,运动目标会在接收端产生一个比发射频率更 高或更低的频率。IF 中频信号是发射(Tx)频率和接 收(Rx)频率之差的绝对值。

多普勒雷达传感器工作于 CW 模式,而不是 基于飞行时间的脉冲模式。CW 模式传感器所发射 电磁波功率非常低(<20dBm, 100mW)。

fd	多普勒频率
f⊤x	发射频率(24GHz)

- C₀ 光速(3 x 10⁸m/s)
- V 目标速度(m/s)
- α 雷达波束和目标运动方向的夹角

将发射频率 frx= 24.125GHz 代入以上公式,可以得到 IF 输出的多普勒频率 fd 如下:

$$f_d = v[km/h] \cdot 44 \text{Hz} \cdot \cos \alpha$$
 or $f_d = v[m/s] \cdot 161 \text{Hz} \cdot \cos \alpha$ (4)

图 6. 角度 α 的定义

测量的速度值跟 cosα 相关,角度 α 会随着目标距离变化而变化。如需精确测速,可以先采用 FSK 模式测量运动目标的实时距离,然后算出实时 cosα。或者用脉冲雷达传感器(K-MC4)直接测出实时角度。

ST200 的 Doppler 模式

请注意下图中对数 FFT 和线性 FFT 的区别,较小的对数波峰未在线性 FFT 体现出来。

图 7. 对数 FFT 频域刻度

注意下图的线性 FFT 模式,较小的信号和噪声信号消失了。

图 8. 线性 FFT 刻度

各种 Chart(图表)模式

除经典的"Scope"模式外,ST200还允许在"Chart"模式下观察缓慢运动的信号

缩放和移动图表

图表中的数据来自信号缓冲区。这里的缩放指的是对显示级别进行缩放,而非对真实信 号进行缩放,允许滚动和缩放。

用户可通过改变 Y 轴范围或改变水平送纸速度, 来实现缩放。

图表也可以被"freezed"(冻结),冻结图表存储有最近的形成一个水平画卷,约1百万个 采样数据。

Signal chart mode 信号图表模式

"Signal chart mode"(图 9 红圈标示)与"Scope"(范围)模式相似,但"Signal chart mode"可以在一个移动很慢的图表上显示信号,这个有助于分析缓慢运动的信号

图 9. Signal chart mode 信号图表模式缓慢运动信号图表(高频率包络图)

用户需要欠采样,以防缓冲区的所有信号都显示到图表上。将 Decimation factor 设置为 最高值,但要小于 Configuration 选项中定义的采样数(图 9 中例子的采样数为 8192)。 此过程称为抽取或重采样,包含了抗频谱混叠处理以适应新的采样率:

图 9 例子中新的采样率限制信号最高频谱为 0.4 * fu = 12.5kHz。

Signal chart mode 信号图表模式-测量缓慢运动的信号

图 10. Signal chart mode 显示非常低的频率信号(人体呼吸信号)

注意: "Suppress DC"复选框(见顶上红色标记)应取消,否则这些缓慢运动的信号将被解读为 DC 信号,导致被误删或者失真。

RMS chart 模式

"RMS chart"模式显示图中谱峰的 RMS 幅度。

图 11. RMS chart 模式,显示选定谱峰的 RMS 幅度

图 11 显示了一个选定波峰的 RMS 幅度图, FFT 谱峰一旦离开选定范围, RMS 幅度就变为 0。 本示例中,水平光标指示的信号幅度低于最低显示刻度。

探索相位关系

两个通道的相位关系可通过交叉 FFT 算法(见图 12)或复杂 FFT 算法(见图 13)进行评估。

图 12. 通过通道 I 和通道 Q 的相位关系来判别运动方向

图 13. 复杂 FFT 显示了一个靠近的目标信号, 波峰位于右侧

FMCW 模式

关于 FMCW

FMCW 即调频连续波,这种技术可以测量静止目标的距离。FMCW 模式需要雷达传感器 内置 FM 调频输入,此输入接受引起频率变化的电压信号。(市面上也有基于数字 PLL 设计的 数字频率控制的雷达传感器。)调制带宽通常是受限制的,在 K 波段,大多数国家允许的最 大调制带宽为 250MHz。

锯齿波调制

发射频率被一个线性斜坡调制。图 14 显示了一个典型的 frx 信号,该信号由静止目标或 者运动目标反射。请注意,差频 fb 在整个斜坡周期内是恒定的。

在雷达传感器的输出端,可得到一个差频信号 fb。该信号由发射信号和回波信号混频(相乘)所得(请参考图 5)。

锯齿波调制具有以下缺点:

- 对于运动目标,很难获得稳定的结果
- 非常尖锐的斜坡会扰乱被放大的信号(拖尾,饱和)

静止目标的回波信号

- fM 调制带宽
- TM 调制周期
- ftx 发射频率
- fRx 接收频率
- tp 信号传输周期(飞行时间)
- fb 差频 ftx-fRx

运动目标的回波信号

fo 多普勒频率偏移 fo是根据多普勒效应产生的频率偏移

图 14. 锯齿波调制(上图为静止目标,下图为运动目标)

距离运算公式:

$$R = \frac{c_0}{2} \cdot \frac{f_b}{f_M} \cdot T_M$$
(5)

R 雷达传感器和目标之间的距离

C₀ 光速(3 x 10⁸m/s)

三角波调制

发射频率被一个三角波调制。图 15 显示了一个典型的 frx 信号,该信号由静止目标或者运动目标反射。请注意,差频 fb 在整个斜坡周期内是恒定的。

在雷达传感器的输出端,可得到一个差频信号 fb。该信号由发射信号和回波信号混频(相乘)所得(请参考图 5)。

静止目标的回波信号

- fm 调制带宽
- TM 调制周期
- ftx
 发射频率

 fRx
 接收频率
- IRX 按收则学
- tp 信号传输周期(飞行时间)
- fb 差频 fTx-fRx

运动目标的回波信号

fp 多普勒频率偏移

fo 是根据多普勒效应产生的频率偏移 通过计算上坡区域和下坡区域可得: fo 就是 fb1 和 fb2 之差

图 15. 三角波调制(上图为静止目标,下图为运动目标)

距离运算公式

$$R = \frac{c_0}{2} \cdot \frac{f_b}{f_M} \cdot \frac{T_M}{2}$$
(7)

- R 雷达传感器和目标之间的距离
- C₀ 光速(3 x 10⁸m/s)

最大探测距离:

$$R_{max} = \frac{c_0}{2} \cdot \frac{T_M}{2}$$

R_{max} 最大探测距离 Co 光速(3 x 10⁸m/s)

三角波调制的优势:

- 可以算出多普勒频率偏移 fo
- 相比锯齿波调制, IF 中频放大器承受更小压力

(8)

高级 FMCW 调制技术

延长三角波调制的固定频率相位,以进行多普勒探测 请参考探索 FMCW 章节了解更多例子

测距精度

在 K 波段(24GHz),最大的调制带宽 fм通常小于 250MHz。考虑到容差和温度影响,通常实际可用的调制带宽为 150MHz。

在一个调制周期 тм 内我们至少需要一个差频 fь,才能测距。测距精度计算公式如下:

$$R_{min} = \frac{c_0}{2 \cdot f_M} = \frac{3^8 m/s}{2 \cdot 250 \text{MHz}} = 0.6 \text{m}$$
(6) $i \& E # i \& d i h & i \& S m & S m \& S m & S$

将实际可用的调制带宽 150MHz 代入公式(6)可得最小探测距离和测距精度为 R = 1m。

当然,通过优化后端 DSP 相关算法、增加 FFT 谱线数量、提高频谱分辨率的方式,可用 提高测距精度。

实际信号中的自混频串扰

FM 调制会对雷达传感器产生副作用,产生副作用的因素有:

1、调制信号泄露到中频输出。

2、发射信号路径和接收信号路径之间的有限的隔离会导致自混合(self-mixing)效应 这些副作用会限制最小探测距离,也会限制信号放大的最大倍数。

图 16. FMCW 的自混合效应

不良的天线罩也可能会导致类似的效应。 关于天线罩设计,请参考技术文档《天线罩设计指南》。

线性特征

在 FMCW 测距应用中,非线性特征(non-linearity)会降低雷达传感器的精度和敏感度。 想要获得可靠的距离信息,(调制信号的)斜坡频率的线性特征至关重要。非线性特征会 损害基于变容二极管的开环振荡器,所以必须用 FMCW 的 VCO 电压发生器纠正非线性特征。

RFbeam 公司的 Signal Explorer 软件提供相关工具,计算并抵消非线性特征,后文将介绍。

探索 FMCW

使用 RFbeam 公司的 K-MC 系列雷达传感器,可获得最佳的 FMCW 探索体验。K-MC 系列雷达传感器具有良好的敏感度和波束聚焦,可以很好的展示各种应用中的 FMCW。

使用时,建议将雷达传感器置于户外。图 17 的例子显示户外的一个雷达传感器的输出 信号。

(请注意,如果窗户含金属成分,它会吸收雷达信号。)

图 17. K-MC1 雷达传感器的输出信号

图 17 的右下角区域展示了用一个计算好的 VCO 斜坡(黄线)获得一个线性的频率斜坡(绿线)。关于更多线性化(linearization)的说明,请参考 <u>FM 线性调频</u>章节。

在"FMCW"模式下,采样数由 VCO 斜坡的定义所决定。请参考 FM 斜坡定义章节。

使用"Learn"按钮来屏蔽掉瞬间的 FMCW 目标的 FFT 读数。

然后选择下拉菜单中的"Diff",该模式输出 FFT(输出电压/均方根值)读数,请延长 Y 轴区 域至负值。

这些会帮助用户更好的观察环境的变化情况。

FSK 模式

FSK 是 Frequency Shift Keying 的英文缩写,中文翻译为频移键控。和 FMCW 采用线性斜 坡调制不同,FSK 模式采用两个离散的载波频率 fa 和 fb(见图 18)。

这两个载波频率(fa和fb)的IF信号需要分别采样到两个缓冲区,以便独立进行FFT处理。

由于 fa 和 fb 数值差别很小,所以两个载波上的移动目标信号的多普勒频率几乎一样, 只是相位不同。

Ta Tb fa f_b txa txb txa txb txa trh 图 18. FSK 调制图 1 IF(t_{xa}) 0.8 0.6 IF(t_{xb}) 0.4 0.2 Amplitude 0 -0.2 -0.4 -0.6 -0.8 -1ó 1m 3m 4m 5m 2m Time 图 19. 产生的多普勒频率图

(调制时序和采样引起的相移也需要考虑在内。)

fa 载波 a 的频率

 fb
 载波 b 的频率

txa载波 a 的采样点txb载波 b 的采样点

采样开关的采样率必须足够高,以满足 奈奎斯特(Nyquist)准则,进行多普勒信 号采集。

 IF(txa)
 载波频率 fa 上的输出信号

 IF(txb)
 载波频率 fb 上的输出信号

对于同一个运动目标,两个多普勒信号 具有相同的频率,相位差为 Δφ

两个 IF 信号的相位可根据目标的谱峰 得到

Δφ IF(txa)和 IF(txb)的相移

φ 取值范围 0~180°

φ的符号表示运动方向

fa 和 fb 差别越小,可探测的距离越大。 假设 fa 和 fb 差别为 1MHz,则对应的最大探测距离为 75m。

- FSK 调制只能探测移动目标
- 可以探测不同速度的多个目标
- FSK 调制测距精度取决于后端信号处理,与雷达传感器本身的调制带宽无关
- FSK 调制具有调制简单、不受线性/非线性问题影响等特点
- VCO 信号产生过程较为简单,但采样和相位测量过程比较复杂

探索 FSK

探索 FSK 调制,采用 RFbeam 公司的 K-LC 系列雷达传感器即可,用户在雷达传感器前方 行走即可。

请注意,对于单通道的 K-LC1 雷达传感器,使用 FSK 调制也可以检测运动方向。

技术背景

ST200 开发套件会在雷达传感器的 VCO 输入端产生一个连续的矩形信号流(方波)。

在雷达传感器的 IF 输出端, fa 和 fb 信号(见图 18)会根据一个严格、稳定的时钟进行缓冲。 每个缓冲区的采样率通常是模拟输出的采样率的 1/4。关于采样率的设置可以参考<u>配置</u> (Configurations)设定章节。

这两个缓冲区将输入到交叉 FFT 的两个输入端,用于测量每个谱线的相位。

Signal Explorer 软件会显示相关的相位信息(对应为距离信息) –最高的谱峰信号。FSK 可 探测不同速度的多个目标的距离信息。

RFbeam 公司的低成本雷达传感器 K-LC1a 也支持 FSK。

图 20. K-LC1a 的 FSK: 移动的行人,期间停住1秒

FSK 模式下可以对信号进行录制,这有助于分析实验室条件下的情况。

请使用 FFT 图表上面的光标选择一个适当的区域。

理论上,每个点的频率都可用于计算相位。在 ST200 中,我们只考虑采集区域中的最高 波峰的信号。

录制与回放信号

ST200 支持对雷达信号录制与回放。数据将按照 NI 公司标准,无压缩的保存在多通道 的 TDMS 文件中。文件的采样率和主采样率保持一致。

以下信息将存储在 TDMS 文件中:

通道相关信息:

- 通道名称(信号名称)
- 数据长度
- 采样周期
- 录制时间

管理员:

- -雷达传感器名称
- 作者(PC 机的用户名) -
- 注释(未使用) -
- 配置名称
- 系统模式(Doppler, FSK) -

Signal Explorer 暂不支持 FMCW 信号录制

录制可能产生大文件,具体文件大小视采样率、通道数和录制时长而定

限制文件大小

通过以下方式,用户可以限制单个文件大小

- 限制文件大小,见图 21、22 中的"Limit Size"选项
- 限制录制时长,见图 21、22 中的"Limit Time"选项
- 录制为多个文件,多个文件将被自动编号

File			File		
K-LC2_default_	.tdms		K-LC2_default_	.tdms	
Values per file, whatever occurs first			Values per file, whatever occurs first		
Limit Size 🔳	100	MB	Limit Size 🔽	10	MB
Limit Time 🔳	00:05:00	HH:MM:SS	Limit Time 🔳	00:05:00	HH:MM:SS
		_ Files			Files

图 21. 未限制文件大小 **图 22.** 文件大小被限制为 10MB

Speichem in:	🍌 ST200-Stream 👻	G 🤌 📂 🗔 🗸		
Zuletzt besucht	Name	Änderungsdatum	Тур	Größe
	K-LC2_default_#1.tdms	02.01.2012 09:38	TDMS-Datei	11'649 KB
	K-LC2_default_#2.tdms	02.01.2012 09:38	TDMS-Datei	11'777 KB
	K-LC2_default_#3.tdms	02.01.2012 09:38	TDMS-Datei	11'649 KB
	K-LC2 default .tdms	02.01.2012 09:38	TDMS-Datei	10'753 KB

图 23. 录制到本地硬盘的文件, 按图 22 设置将文件大小限制为 10MB 欲了解更多关于 TDMS 文件格式,请访问 <u>http://zone.ni.com/devzone/cda/tut/p/id/3727</u> 设定

配置(Configurations)

ST200 开发套件的各种设定(比如雷达传感器类型信息)统一称为配置(Configurations)。根据需要,用户可以新建多个配置。

配置(Configurations)设定

用户可以修改或复制已有的配置,也可以新建配置。

从列表中选择预设配置 一个配置包含以下信息: ● 雷达传感器类型

- 田丛传恐奋失空
- 指定的连接头
- 每通道的采样

● FSK 周期

元素		描述	
1	配置选择器	选择一个已有的配置,进行观察或修改	
2	新建配置按钮	基于所选配置,新建一个配置	
3	删除	删除所选配置	
4	连接头名称	选择连接头,请参考 <u>雷达传感器接头</u> 章节	
5	雷达传感器型号	选择一个已有的雷达传感器,可参考 <u>雷达传感器规格书</u> 章节	
6	采样率	每个通道的 ADC 采样率	
		250k 除以通道数,最大即为 250k	
7	每个通道的采样数	送往后端信号处理(FFT)的每个通道的采样数	
8	FSK 周期	FSK 采样循环周期	
		最大为4,表示每个载波频率有两个采样	
9	连接头信息	显示已连的连接头的关键信息(只读)	
10	保存按钮	点击保存已做的修改	

如果用户新建了配置,系统将生产一个配置名如下:

K-LC2_X4-5_IQH.cfg

ST200 接头名称(可参考雷达传感器接头章节) 雷达传感器型号

如果没有 100%肯定,请不要修改己有配置。 xx_default 配置不可删除

雷达传感器规格书

雷达传感器规格书是配置(Configuration)的一部分,每个雷达传感器的参数可参考数据 表(sensorname.ini 文件)。

[Comment] comment =	for future use
[ModuleConfig] stereo = TRUE MonoPulse = FALSE RxChannels = 1	These items define general sensor achitecture
<pre>[VCO] V_fmin = 1.000000 V_f0 = 5.000000 V_fmax = 10.000000 V_FMmax = 10 f_min = 24.036000 f_0 = 24.105000 f_max = 24.230000</pre>	Items affected automatically by FM Linearization Minimal VCO voltage Interpolation point at approx. ½ VCO range Maximal VCO voltage for future use Frequency @ VCO voltage V_fmin Frequency @ VCO voltage V_f0 Frequency @ VCO voltage V_fmax

图 25. MC1.ini: 雷达传感器 K-MC1 的数据表

命名约定

在新建一个配置时,这个文件名对应雷达传感器型号。如: 文件 MC1.ini 对应雷达传感器 MC1。

存储路径

所有雷达传感器的规格书都保存于\ModuleSettings,可参考工作文件章节。

适配已有雷达传感器

只有 VCO 特性可以被修改,修改了的 VCO 数据会影响相应的.ini 文件。

新建一个全新的雷达传感器

通过一个 ASCII 编辑器(如 notepad),用户可以编辑并新建一个全新的雷达传感器。

当然,新建一个雷达传感器,必须知道 VCO 相关数据。如果 VCO 数据未知,也可以通过 RFbeam 公司的 K-TS1 测试系统测量并得到数据。

FM 斜坡定义

FM 斜坡定义如下:

[FMCW_Spec]	
UserWavePath =	for future use
//Number of Samples	
UpRamp = 2048	Number of samples for up-chirp
DnRamp = 2048	Number of samples for down-chirp
Doppler = 4096	Number of samples for doppler ($0 = no doppler$)

这会产生一个含 8192 个采样点的 FMCW 周期。

- 满刻度对应的电压大小取决于<u>雷达传感器规格书</u>章节的相关设定
- 频率范围取决于雷达传感器规格书章节的相关设定
- 线性补偿取决于 FM 线性调频的相关设定
- 采样率取决于<u>配置(Configurations)</u>章节的相关设定

FM 线性调频

ST200 提供一个名为"VCO-Lin"的工具,利用 3 个已知频点,通过插值估算出 VCO 特性。 用户可以将数据导出为 csv 格式文件,用在自己的 FMCW 系统中。

参考<u>探索 FMCW</u>章节的图 17,在 FMCW 模式下点击【Set VCO】按钮。用户可以通过 RFbeam 公司的 K-TS1 测试系统测量雷达传感器得出 3 个频点。

VCO-Lin 利用 3 个频点,然后通过插值算出 VCO 曲线的其他采样点,具体点数根据用户 需求而定。

- 1. 输入3个数据对(Vco电压-发射频率) 这些频点与雷达传感器规格书章节对应
- 选择输出类型: (频率 vs VCO)或(VCO vs 频率)
- 3. 插值点数
- 4. 可拖动的光标
- 5. Polynom(多项式)信息
- 6. 数值输出表
- 7. 将上表输出为 csv 格式文件

文件和目录组织

系统文件

以下文件为系统文件,**不可修改或编辑**。这些文件在 Signal Explorer 软件安装时被复制 到用户电脑硬盘。

[Programair] (RFbeam (\$1200_SignalExplorer (Programair			
ST200.exe		至关重要的程序文件	
Configurations\	AI_Config.ini 1) K-LC1_default.cfg K-LC1_X4-4IH.cfg ***.cfg	配置文件 出厂设置 安装时复制到用户电脑硬盘	
FMCW-Settings\	3-blocks_8192.ini Triangle_4096.ini ***.ini	FMCW 波形描述 出厂设置 安装时复制到用户电脑硬盘	
ModuleSettings\	K-LC1.ini K-LC2.ini ***.ini	雷达传感器描述 出厂设置 安装时复制到用户电脑硬盘	

[Programdir]\RFbeam\ST200 SignalExplorer\ Programdir

注释 1): Al_Config.ini 包含 ST200 开发套件的硬件信息

工作文件

在 Signal Explorer 软件安装过程中,以下文件被复制到用户目录中,具体路径视操作系统而定。这些文件不能直接修改,但是不同的安装选项会影响这些文件。

Windows xp

C:\Documents and Settings\user name\Local Settings\AppData\RFbeam\ST200

Windows Vista, Windows 7

C:\Users\user name\AppData\Local\RFbeam\ST200\

注意:此目录可能被隐藏,如需访问,请修改文件夹选项"显示隐藏文件"

Appstats.ini		统计信息和安装历史
System.ini		最近一次面板设置
Configurations\	AI_Config.ini 1) K-LC1_default.cfg K-LC1_X4-4IH.cfg ****.cfg	配置文件 存储 <u>配置(Configurations)设定</u> 章节中的设定
FMCW-Settings\	3-blocks_8192.ini Triangle_4096.ini ***.ini	FMCW 波形描述
ModuleSettings\	K-LC1.ini K-LC2.ini ****.in	雷达传感器描述

注释 1): Al_Config.ini 包含 ST200 开发套件的硬件信息

雷达传感器接头

X1 通用 I/O 接头

X1 通用 I/O 接头包含 3 路模拟输入, 2 路模拟输出和 4 路数字输入/输出。

引脚	信号	输入/输出	描述	备注(with NI USB-6211)
1	AI13	输入	模拟信号直接输入	范围: ±0.2V, ±1V, ±5V, ±10V
2	AGND	输入/输出		
3	AI14	输入	模拟信号直接输入	范围:±0.2V, ±1V, ±5V, ±10V
4	AGND	输入/输出		
5	AI15	输入	模拟信号直接输入	范围:±0.2V, ±1V, ±5V, ±10V
6	AGND	输入/输出		
7	DO0	输出	数字信号直接输出	最大 16mA
8	DO1	输出	数字信号直接输出	最大 16mA
9	DO2	输出	数字信号直接输出	最大 16mA
10	DO3	输出	数字信号直接输出	最大 16mA
11	DIO	输入	数字信号直接输入	下拉电阻 47kΩ
12	DI1	输入	数字信号直接输入	下拉电阻 47kΩ
13	DI2	输入	数字信号直接输入	下拉电阻 47kΩ
14	DI3	输入	数字信号直接输入	下拉电阻 47kΩ
15	AGND	输入/输出		
16	VCC	输出	最大输出+5V, 400mA	
17	AO0	输出	模拟信号直接输出	\pm 10V, ±2mA, Rout=0.2 Ω
18	AGND	输入/输出		
19	AO1	输出	模拟信号直接输出	\pm 10V, \pm 2mA, Rout=0.2 Ω
20	AGND	输入/输出		

X2/X3 直接输入接头

X3 可连接有内置 IF 中频放大器的雷达传感器,如 RFbeam 公司的 K-MC1。 X2 比 X3 多了数字 I/O,用于控制更复杂的雷达传感器。

X2/X3 上的雷达传感器供电电压可为 3.3V 或 5V,可通过跳线 JP3 选择供电电压。

X2 引脚配置

引脚	信号	输入/输出	描述	备注(with NI USB-6211)
1	/Enable	输出	雷达传感器/使能	来自 DO0 引脚,20mA
2	VCC	输出	供电电源配置	通过 JP3 选择+3.3V/0.4A 或+5V/0.4A
3	GND	输入/输出		
4	Q_HI	输入	多普勒 Q 通道信号,高增益	模拟信号直接输出至 AI3 引脚
5	I_HI	输入	多普勒 通道信号, 高增益	模拟信号直接输出至 Al2 引脚
6	VCO	输出	0~5V 输出	来自 AOO 引脚
7	I_LO	输入	多普勒 通道信号, 低增益	模拟信号直接输出至 AIO 引脚
8	Q_LO	输入	多普勒 Q 通道信号,低增益	模拟信号直接输出至 Al1 引脚
9	I2_LO	输入	多普勒 通道信号, 低增益	模拟信号直接输出至 AI8 引脚
10	Q2_LO	输入	多普勒 Q 通道信号,低增益	模拟信号直接输出至 AI9 引脚
11	12_HI	输入	多普勒 通道信号, 高增益	模拟信号直接输出至 Al10 引脚
12	Q2_HI	输入	多普勒 Q 通道信号,高增益	模拟信号直接输出至 Al11 引脚
13	AGND	输入/输出		
14	DGND	输入/输出		
15	DIO0	输入/输出	数字输入/输出	设置跳线 JP2 为 DI0/DO0
16	DIO1	输入/输出	数字输入/输出	设置跳线 JP2 为 DI1/DO1
17	DIO2	输入/输出	数字输入/输出	设置跳线 JP2 为 DI2/DO2
18	DIO3	输入/输出	数字输入/输出	设置跳线 JP2 为 DI3/DO3
19	AI12	输入	模拟信号直接输入	范围: ±0.2V, ±1V, ±5V, ±10V
20	VCC	输出	最大输出+5V, 400mA	

X2 有 4 个数字 I/O,通过跳线 JP2,可选择数字 I/O 为输入或输出。^{№ €}

JP3 Supply X2,X3

X3 引脚配置/供电电源选择

引脚	信号	输入/输出	描述	备注(with NI USB-6211)
1	/Enable	输出	雷达传感器/使能	来自 DO0 引脚,20mA
2	VCC	输出	供电电源配置	通过 JP3 选择+3.3V/0.4A 或+5V/0.4A
3	GND	输入/输出		
4	Q_HI	输入	多普勒 Q 通道信号,高增益	模拟信号直接输出至 AI3 引脚
5	I_HI	输入	多普勒 通道信号, 高增益	模拟信号直接输出至 AI2 引脚
6	VCO	输出	0~5V 输出	来自 AO0 引脚
7	I_LO	输入	多普勒 通道信号, 低增益	模拟信号直接输出至 AIO 引脚
8	QLO	输入	多普勒 Q 通道信号,低增益	模拟信号直接输出至 Al1 引脚

X4 / X5 高增益输入

X4 / X5 可连接无内置 IF 中频放大器的雷达传感器,如 RFbeam 公司的 K-LC1。通过数字 输出引脚 DO3 可设置 4 档不同的增益。低增益常用于 FMCW 模式,因为高增益放大器会饱 和目标信号。

X4 / X5 上的雷达传感器供电电压可为 3.3V 或 5V,可通过跳线 JP4 选择供电电压。

引脚配置/供电电源选择

引脚	信号	输入/输出	描述	备注(with NI USB-6211)	
1	IF_Q	输入	多普勒 Q 通道信号	使用单通道雷达传感器时,无需连接	
2	VCC	输出	供电电源配置	通过 JP4 选择+3.3V/0.4A 或+5V/0.4A	JP4 Supply V4 V5
3	IF_I	输入	多普勒 通道信号	使用单通道雷达传感器时, 需连接	
4	GND	输入/输出			337.57
5	VCO	输出	-0.5~2V 输出	来自 AO0 引脚	3.34 34
6	NC	-	未连接		

为 X4 / X5 可选的增益设置

数字输出引脚 DO3 可以设置第一级放大器增益。I、Q 两路第一级放大器增益设置的刻度都是 20dB。用户可参考 ST200 系统框图了解更多。

DO3	AI4 (IF_Q)	AI6 (IF_Q)	AI5 (IF_I)	AI7 (IF_I)	注释
Low	20dB	60dB	20dB	60dB	通电后默认值
High	OdB	40dB	OdB	40dB	不能用于 Signal Explorer 软件

X10 可选的 DC 电源输入

如果 USB 供电不足,请使用 X10 外接 DC 电源。

X11 电源输出

X11 可为外部设备输出低噪声电源。

引脚配置

A 1 /1 1 H						
引脚	信号	输人/输出	描述			
1	VCC3V3	输出	最大输出 3.3V/400mA			
2	VCC5V	输出	最大输出 5V/400mA			
3	VCC-5V	输出	最大输出 -5V/80mA			
4	PGND	输入/输出				

用户手册版本历史

版本号	修改时间	修改内容
0.1	2011.06	最初预备版本
0.2	2011.07.15	预备版本
1.0	2011.09.20	官方第一版,适用于 Signal Explorer 软件 1.1 及以上版本
1.1	2012.01.02	增加限制文件大小章节,修正 FSK 模式章节中关于最大测距的描述。 适用于 Signal Explorer 软件 1.1.1 及以上版本
1.2	2012.01.17 修正了公式(4)	