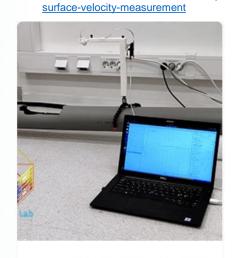
Surface Flow Velocity Measurement

May 2023

60GHz PCR for Surface Velocity Measurements


Contactless accurate reading

Small form factor

Low power – enables battery driven devices

Robust detection in harsh environments

Acconeer Innovation Lab Example

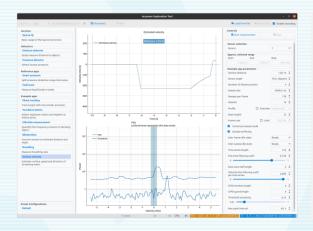
SURFACE VELOCITY MEASUREMENT

The A121 Pulsed Coherent Radar sensor is used to monitor and measure water surface speed...

Applications

Measuring surface velocity within a wide range of applications

- Running water in rivers and canals
- Surface flow in open pipes and ditches
- Speed of spray and cascades
- Most types of liquids including water, oil, chemicals, fuel


A121 evaluation kit Surface velocity measurement example

LH132 (Lens kit)

XE125 EVK
(A121 Radar Sensor)

- Evaluation kit XE125 with A121
- LH132 lens kit with spherical or FZP lens
- Surface Velocity example app included in Python Exploration tool
 - Open-source python code

EXPLORATION TOOL

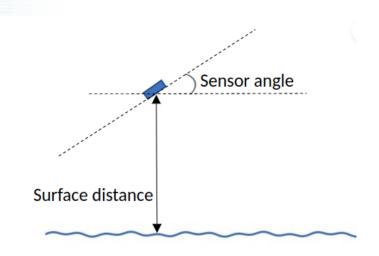
(Windows & Linux)

Proof-of-concept

Lab set-up

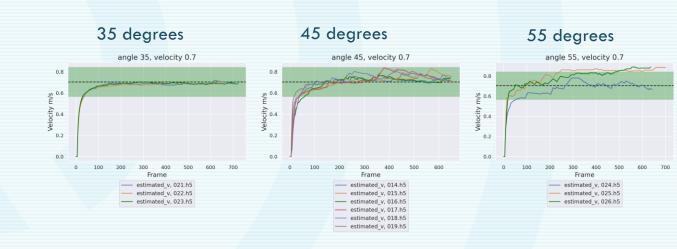
- Evaluation kit (XE121/ XS121/LH112)
- The measurements were done in the Acconeer lab with a pipe and a water hose
- The reference velocity was measured by having a reference object floating within a known distance and time

Outdoor

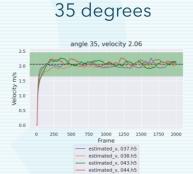


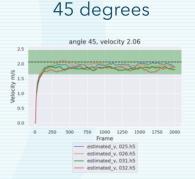
- Evaluation kit (XE121/ XS121/LH112)
- The measurements were made from a bridge over streaming water
- The reference velocity was measured by having a reference object floating within a known distance and time

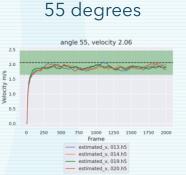
PoC - Conditions


- Sensor to be positioned at an angle of 35 –
 45 degrees to surface
- Larger angle gives better velocity estimates, but too large angle leads to signal loss
- Flow is detected through ripples that travel on the surface
- Direction of flow is seen as positive or negative velocity
- Maximum velocity is determined by sweep rate
- Threshold method used is CFAR

PoC Measurements Lab set up with velocity ~0.70 m/s


- Plots show different angles
- The green area shows ± 20% of reference value
- For the angle of 45 degrees, two different ranges were tested, and three measurements were done for each
- Three measurements were done for 35 and 55 degrees





PoC Measurements Outdoor with Velocity ~2.1 m/s

- Plots show measurements at different angles
- The green area shows ± 20% of reference value


PoC-Summary

Parameter		Comment
Radar	A121	
Detection angle	35° to 45°	With di-electric lens LH112, for ~10° HPBW
Detection distance	Up to ~4m	Depending on surface characteristics
Speed range	0.1m/s to 25m/s	
Power consumption	~30 μW	Est. with measurement every 10min
Temperature range	- 40°C to + 105°C	

Acconeer - Customer Reference

